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Abstract Compact regular frames are always spatial. In this note we present a
method for constructing non-spatial frames. As an application we show that there
is a countably compact (and hence pseudocompact) completely regular frame which
is not spatial.
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1 Introduction

It is known that every compact regular frame is spatial. In fact, this is equivalent to
the Boolean Ultrafilter Theorem, which states that every proper filter in a Boolean
algebra is contained in an ultrafilter (see, for instance, [1]). During BBFest2011, a
conference held at the University of Cape Town from 28 to 30 March 2011 on the
occasion of the 85th birthday of Bernhard Banaschewski, a question was asked if
every completely regular pseudocompact frame is spatial.

In this note we show that, in contrast to the compact regular case, there is
a non-spatial completely regular countably compact (and hence pseudocompact)
frame. A usual source of non-spatial frames is the class of Boolean frames without
atoms. However, a completely regular non-spatial countably compact frame cannot
be among the Boolean ones because Boolean frames are paracompact [9], and
paracompact pseudocompact regular frames are compact [4].

Not only is the example we proffer non-spatial, it in fact has no points whatsoever.
For our construction we first describe a simple method for constructing new

frames from spatial ones. It is then applied for the construction of the example that
we just mentioned showing that the method has potential. Moreover, our arguments
are very set theoretical. We hope that there will be more applications of our set
theoretical method to the theory of frames.

2 Preliminaries

Our reference for frames is Picado and Pultr [8]. Throughout the paper, by frame
we shall mean a completely regular frame. We denote the frame of open sets of
a topological space X by OX. A frame is spatial if it is isomorphic to OX, for
some topological space X. An internal characterisation of spatial frames is that
every element can be written as a meet of meet-irreducible elements. These are the
elements p such that p < 1, and x ∧ y ≤ p implies x ≤ p or y ≤ p.

We use the notation of [2] regarding the ring RL of real-valued continuous
functions on a frame L. An element α of RL is said to be bounded if there exist
p, q ∈ Q such that α(p, q) = 1L(R). A frame L is pseudocompact if RL = R∗L;
where the latter designates the subring consisting of bounded elements. There are
several internal characterisations of pseudocompact frames (see e.g. [3] and [5]).
For example, a completely regular frame is pseudocompact if and only if every
countable cover has a finite subset with dense join. A frame is countably compact
if every countable cover has a finite subcover. Clearly, a countably compact frame is
pseudocompact.

3 A Method for Constructing New Frames from Spatial Ones

All topological spaces under discussion are Tychonof f. For standard facts about
cardinal functions in topology, see Juhász [7]. If A and B are sets, then A�B denotes
their symmetric difference.

In this section we will describe a simple method for constructing new frames from
frames of the form OX. To this end, let κ be an infinite cardinal number, X a space



Order (2014) 31:115–120 117

of weight at most κ . This means that X has a basis for its topology of cardinality at
most κ . Moreover, let I be a κ+-complete ideal of subsets of X. This means that I is
an ideal of subsets of X which has the following property: if A ⊆ I and |A| ≤ κ , then⋃A ∈ I .

Lemma 3.1 If A ⊆ OX then there exists B ⊆ A such that |B| ≤ κ and
⋃A = ⋃B.

Proof Obvious from the fact that the weight of X is at most κ . �	

Now let L = OX. We define a relation 
 on L as follows: for U, V ∈ L we put

U 
 V iff U \ V ∈ I.

Lemma 3.2 If U, V, W ∈ L, then

(1) U 
 U,
(2) if U 
 V and V 
 W, then U 
 W,
(3) if U 
 V and U 
 W, then U 
 V ∩ W,

Proof For (1) and (2) observe that U \ U = ∅ ∈ I and

U \ W ⊆ (V \ W) ∪ (U \ V) ∈ I.

For (3), observe that U \ V ∈ I and U \ W ∈ I . Hence U \ (V ∩ W) ∈ I since

U \ (V ∩ W) ⊆ (U \ V) ∪ (V \ W).

So we are done. �	

Next, we define an equivalence relation ∼ on L by

U ∼ V iff U 
 V and V 
 U.

Thus,

U ∼ V iff U�V ∈ I.

For U ∈ L we let [U] denote its ∼-equivalence class. Now put M = L/∼, and define
a partial order ≤ on M by

[U] ≤ [V] iff U 
 V.

It is clear that this definition is well-defined.
We will show that M is a frame.

Lemma 3.3 If [U], [V] ∈ M, then [U] ∧ [V] exists and is equal to [U ∩ V].

Proof It is clear that [U ∩ V] ≤ [U], [V]. Take an element O ∈ L such that [O] ≤
[U], [V]. Then [O] ≤ [U ∩ V] by Lemma 3.2(3). Hence [U] ∧ [V] = [U ∩ V]. �	

Lemma 3.4 If [Ui] ∈ M for every i ∈ I, then
∨

i∈I[Ui] exists and is equal to
[⋃

i∈I Ui
]
.
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Proof Clearly [U j] ≤
[ ⋃

i∈I Ui
]

for every j ∈ I. Now assume that for some [O] ∈ M
we have that [Ui] ≤ [O] for every i ∈ I. By Lemma 3.1, there is a subset I′ of I of
cardinality at most κ such that

⋃

i∈I′
Ui =

⋃

i∈I

Ui.

Hence, since Ui \ O ∈ I for every i ∈ I′ and I is κ+-complete, we have that

(
⋃

i∈I

Ui

)

\ O =
(

⋃

i∈I′
Ui

)

\ O =
⋃

i∈I′
(Ui \ O) ∈ I.

But then
[ ⋃

i∈I Ui
] ≤ [O]. Hence

∨
i∈I[Ui] =

[ ⋃
i∈I Ui

]
. �	

So now it is indeed easy to see that M is a frame with bottom [∅] = {U ∈ OX :
U ∈ I} and top [X] = {U ∈ OX : X \ U ∈ I}.

Theorem 3.5 M is a completely regular frame.

Proof Observe that by Lemmas 3.3 and 3.4 the function f : L → M defined by
f (U) = [U] is a surjective frame homomorphism. Thus, M is a quotient of the
completely regular frame L, and is therefore completely regular. �	

Remark 3.6 Observe that this method is very general since no specification was
made for the ideal I except for the fact that it is κ+-complete. It is also possible
to consider τ+-complete ideals, where τ is some cardinal number less than κ , and
vary the construction a little.

4 The Example

We now describe the promised example of a countably compact completely regular
frame which is not spatial. Let c denote the cardinality of the continuum.

Let X be a compact Hausdorff space with the following properties: the weight of
X is c and if A ⊆ X is closed, then either A is finite or |A| = 2c. Let I be the ideal
of subsets of X of cardinality at most c. Then clearly I is c+-complete. We will show
that the frame M that was constructed in Section 3 from the frame OX is completely
regular, countably compact but not spatial.

An example of such a space X is βω \ ω, the Čech-Stone remainder of the
countable discrete space ω (see for example [6, 9.12] and [10, 3.17].) Moreover, X
has no isolated points ([6, 9.5]; see also [10, 3.12]). This is just one example of a space
with the required properties, there are many others.

Since a frame is spatial if and only if each of its elements is the meet of meet-
irreducible elements (see [8, 5.3]), the following result implies that M is not spatial.

Lemma 4.1 M has no meet-irreducible elements.
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Proof Assume that [U] �= [X]. Then X \ U has cardinality at least c+. Let E be the
collection of all relatively open subsets of X \ U of cardinality at most c.

Claim |⋃ E | ≤ c.

Observe that the weight of X \ U is at most c. Hence there is a subcollection F of
E such that |F | ≤ c and

⋃F = ⋃ E (Lemma 3.1). Hence the Claim follows.
Since X \ U has cardinality at least c+, there are distinct p, q ∈ (X \ U) \ ⋃ E .

Let A and B be disjoint open neighborhoods in X of p respectively q. Then by
Lemma 3.3,

[A ∪ U] ∧ [B ∪ U] = [(A ∪ U) ∩ (B ∪ U)] = [U]. (1)

However, A ∩ (X \ U) has cardinality at least c+ since otherwise A ∩ (X \ U) ∈ E
which violates p �∈ ⋃ E . Hence [A ∪ U] �≤ [U], and similarly, [B ∪ U] �≤ [U]. From
this and Eq. 1 it follows that [U] is not meet-irreducible. �	

Theorem 4.2 The frame M is completely regular, countably compact but not spatial.

Proof By Lemma 4.1 we only need to prove that M is countably compact. To this
end, let [Un] ∈ M for n < ω such that

∨
n<ω[Un] = [X]. Put U = ⋃

n<ω Un. Then by
Lemma 3.4 [U] = [X], which implies that X \ U has cardinality at most c. We claim
that there exists N < ω such that U = ⋃

i≤N Ui. Striving for a contradiction, assume
that this is not true. Then we can find an increasing sequence of integers

N0 < N1 < · · · < Nn < · · ·
and elements xn ∈ UNn \

⋃
m<n UNm for n < ω. Put A = {xn : n < ω}. Since A ∩ Un is

finite for every n and is contained in {xn : n < ω}, we have that B = A \ {xn : n < ω}
is contained in X \ U . But A is not finite, hence has cardinality 2c. Therefore B has
cardinality 2c, which is a contradiction since X \ U has cardinality at most c.

Thus, [U] = [X], from which it follows that [U0] ∨ · · · ∨ [UN] = [X]. �	

Remark 4.3 By Picado and Pultr [8, 6.3.4] each locally compact frame is spatial.
Hence M is not locally compact. It may be illustrative to give a direct argument that
M is not compact for the case that X = βω \ ω. In fact, the argument gives us that
M is not Lindelöf. To see this, pick an arbitrary x ∈ X, and let C be the collection
of all clopen subsets of X that do not contain x. Since X is zero-dimensional, by
Lemma 3.4 it is clear that

∨
C∈C[C] = [X]. Assume that there is a countable F ⊆ C

such that
∨

C∈F [C] = [X]. Then, on the one hand, X \ ⋃F is a nonempty closed
Gδ-subset of X since it contains x, and on the other hand must have cardinality at
most c. But every nonempty Gδ-subset of X has cardinality 2c [10, 3.27 and 3.11] and
so this is a contradiction.
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